COMPUTER SCIENCE & IT

GATE / PSUs

STUDY MATERIAL THEORY OF COMPUTATION

COMPUTER SCIENCE

20

E

COMPUTER SCIENCE & IT

GATE & PSUs

STUDY MATERIAL

THEORY OF COMPUTATION

1

CONTENT

1.	ALPHABETS, STRINGS AND LANGUAGES	03-23
2.	FINITE STATE MACHINE	24-55
3.	REGULAR LANGUAGE AND REGULAR EXPRESSION	56-98
4.	CONTEXT FREE GRAMMAR	99-121
5.	PUSHDOWN AUTOMATA	122-146
6.	TURING MACHINES	147-181

ALPHABETS, STRINGS AND LANGUAGES

The theory of computation is the branch of computer science and mathematics that deals with whether and how efficiently problems can be solved on a model of computation, using an algorithm.

The field is divided into three major branches:

- (I) Automata Theory
- (II) Computability Theory
- (III) Complexity Theory

(I) Automata Theory

Automata theory includes the study of abstract machine and computational problems that can be solved using these machines.

(II) Computability Theory

Computability deals with wheather a problem is solveable using computer or not.

(III) Complexity Theory

Complexity theory not only consider whether a problem can be solved at all on a computer, but also how efficiently the problem can be solved.

Fundamental Concepts of Theory of Computation:

Symbols:

Symbols are indivisible objects or entity that cannot be divided. A symbol is any single object such as a, 0, 1, # etc. Usually, characters from a typical keyboard are only used as symbols.

Alphabet:

- An alphabet is a finite, non-empty set of symbols.
- Alphabet represented by Σ

Examples of alphabet:

 $\Sigma = \{0, 1\}$ is a binary alphabet

$$\Sigma = \{\#, \nabla, \beta\}$$
$$\Sigma = \{a, b, c, s, z\}$$

Strings:

• String is a finite sequence of symbols from the alphabet.

Examples of strings:

0, 1, 00, 01, 10, 11 are strings over $\Sigma = \{0, 1\}$

a, b, aa, ab, ba, bb are strings over $\{a, b\}$

CS & IT

ab and *ba* are different strings.

Length of string must be finite.

Note: It is not the case that a string over some alphabet should contain all the symbols from the alphabet. For example, the string *cc* over the alphabet $\{a, b, c\}$ does not contains symbols *a* and *b*.

It is also true that a string over an alphabet is also a string over any super set of that alphabet.

Null/Empty String:

- String containing no symbol
- Represented by \in or λ
- Length of null string is 0.
- \in is a string over any alphabet

Language

• A general definition of language must cover a variety of distinct categories: Natural Languages, Programming Languages etc.

Language can be defined as a system suitable for expression of certain ideas, facts or concepts, which includes a set of symbols and rules to manipulate these.

• In Theory of Computation, language is defined as set of strings over some alphabet.

Example: $\Sigma = \{0, 1\}$

 $\mathbf{L} = \{ \mathbf{0}^m \ \mathbf{1}^m \mid m \ge \mathbf{0} \}$

 $L = \{\lambda, 01, 0011, 000111, \dots \}$

- Set of strings, which satisfy certain condition is called language.
- Set of language can be finite or infinite.

Universal Languages: (Σ^*, Σ^+)

- Σ^* denotes the set of all sequences of strings composed of zero or more symbols of Σ .
- Σ^+ denotes the set of all sequences of strings composed of one or more symbols of Σ . That is

 $\Sigma^+ = \Sigma^* - \{\lambda\}$ or $\Sigma^* = \Sigma^+ + \{\lambda\}$ (Here λ represent Null string)

- Σ^* and Σ^+ are infinite sets.
- Every language is a subset of Σ*

Empty Language: ϕ

• Language with 0 string is called empty language.

Example: L = { }

Length of L = |L| = 0 where L is empty language

 \bullet Empty language is represented by φ

Note: $L_1 = \{\lambda\}$ $L_2 = \{\}$ here L_1, L_2 are not same because L_1 is a language with null string while L_2 is a language with zero string. Here length of L_1 is $|L_1| = 1$

CS & IT

Properties Related to Strings:

1. Length of String:

• Length of a string ω , denoted by $|\omega|$, is number of symbols in it.

Example $\Sigma = \{0, 1\}$ $w = 0 \ 1 \ 1 \ 0$ |w| = 4

Example $\Sigma = \{a, b\}$ $w = a \ a \ a \ b$ |w| = 4

• Empty string is string of length 0, usually written as ε or λ .

2. Reversal of String

• Reverse string of a string w represented by w^{R} is string obtained by writing the string w in reverse order.

Example 1. $\Sigma = \{a, b\}$

w = a b b b a b (write the string in reverse order)

$$w^{R} = b a b b b a$$

Example 2. w = automata

$$w^{\mathrm{R}} = a t a m o t u a$$

$$|w| = |w^{\mathsf{R}}|$$

 $w = w^{R}$, in case of Palindrome strings.

Example 3. Consider a Palindrome string w = a b b a, over the $\Sigma = \{a, b\}$

 $w^{\rm R} = \lambda$

 $w^{\rm R} = a b b a$

• $w = w^{R}$ in case of Palindromes

Example 4. $w = \lambda$

3. Concatenation of Strings:

• Concatenation of strings x and y, denoted by x . y or xy, is a string z obtained after concatenating strings x and y in the same order.

Example 1. x = a b b a $\Sigma = \{a, b\}$

y = a a a x . y = a b b a a a a y . x = a a a a b b a

In Example1, commutativity is not maintained.

Example 2. $\Sigma = \{0, 1\}$ $w = 0 \ 1 \ 1 \ 0 \ 1$ $u = \lambda$ $u.w = 0 \ 1 \ 1 \ 0 \ 1$ $w.u = 0 \ 1 \ 1 \ 0 \ 1$

In Example 2, commutativity is maintained

So we can say that $u.v \neq v.u$ (It may be true sometimes, sometimes false)

• Concatenation of strings is always associative

Example 3. $\Sigma = \{a, b\}$

u = a a b v = b b a w = a a

CS & IT

THEORY OF COMPUTATION

(u.v).w = u.(v.w)• |u.v| = |u| + |v|

• |u.v| = |v.u| (always true)

4. Sub-string:

• A string u is said to be sub string of w, if u appears in w, also the length of u is always less then or equal to the length of w.

[always true]

Example 1. Find all the sub strings of GATE.

Zero	Length sub string:	λ
One	Length sub string:	G, A, T, E
Two	Length sub string:	GA, AT, TE
Three	Length sub string:	GAT, ATE
Four	Length sub string:	GATE
Total:	11 sub strings all there	

• Null string is a sub string of every string.

• For string w, w is always sub string of string.

Trivial sub strings:

If *w* is any string, string itself and null string are called trivial sub strings.

Non-Trivial Sub strings:

If w is any string, then any sub string of w other them w itself and λ are called non-trivial sub strings.

Example 2. Find the number of sub strings for the given string w = a b b over the $\{a, b\}$

Zero length = λ

One length = a, b

Two length = ab, bb

Three length = a b b

Answer 6.

Note:

• If all the symbols in string *w* are different then

Number of sub strings =
$$\frac{n(n+1)}{2} + 1$$

where *n* is length of string *w*.

• If there is repetition of symbols within the string like in above example, then there is no general formula for finding the number of sub strings.

5. Power of string:

• If *w* is any string, then:

$w^{0} = \lambda$ $w^{1} = w$ $w^{2} = w \cdot w$ $w^{3} = w \cdot w \cdot w$ $\vdots \qquad \vdots$ \vdots

Example 1.

```
w^{0} = \lambda

w^{1} = a a b

w^{2} = w \cdot w = a a b a a b

\vdots

\vdots

\vdots
```

w = a a b

• Power of string can never be negative.

 $\Sigma = \{a, b\},\$

6. Prefix of String:

- Any string of consecutive symbols in same string *w* is said to be prefix of the string if:
 - w = v u

Here v represents prefix of the string.

Example 1. $\Sigma = \{a, b\}$ w = a a b bFind all prefixes of the string w?Zero length prefix : π $\underline{\lambda} a a b b$ One length prefix : a $\underline{\lambda} a a b b$ Two length prefix : a a $\underline{\lambda} a a b b$ Three length prefix : a a b $\underline{\lambda} a a b b$

Four length prefix: $a \ a \ b \ b$ $\frac{\lambda \ a \ a \ b \ b}{\lambda \ a \ a \ b \ b}$

• If w is any string, then w and λ are always the prefix of w.

• Number of prefix = n + 1, where *n* is length of *w*.

• Number of prefixes are independent of, whether string includes repetition of symbols or not.

Number of prefix = n + 1 (always)

Example 2. Find all the prefixes of GATE.

Ans. $\{\lambda, G, GA, GAT, GATE\}$

7. Suffix of String

Any string of consecutive symbols in some string w is said to be suffix of the string, if:

w = vu

Here, *u* represents suffix of the string.

Example 1. Find all the suffixes of the string.

CS & IT	
---------	--

THEORY OF COMPUTATION

Zero length suffix: λ GATE λ

One length suffix: E GATE

Two length suffix: TE $GA\underline{TE}$

Three length suffix: ATE GATE

w = GATE

Four length suffix: GATE \underline{GATE}

• Number of suffix = n + 1, where *n* is length of string.

• If w is any string, then w and λ are always the suffix of w.

Operations on Languages

- A language can be stated as collection of the strings over the alphabet Σ .
- Σ^* contains all the possible strings over the alphabet Σ .
- (i) Complementation
- (ii) Union
- (iii) Intersection
- (iv) Concatenation
- (v) Reversal
- (vi) Closure
- (vii) Power of language
- (viii) Subtraction of languages
- (ix) EX OR of languages
- **1.** Complementation: If L is language then L^{C} is the complement of the language.

 $L^{c} = \Sigma^{*} - L$

Example 1. Let $\Sigma = \{0, 1\}$ be the alphabet,

 $L = \{ w \in \Sigma^* | \text{ the number of 1's in } w \text{ is even} \}$

 $L^{C} = \{w \in \Sigma^{*} | \text{ the number of 1's in } w \text{ is odd} \}$

2. Union of language:

Let L_1 and L_2 be languages over an alphabet Σ then union of L_1 and L_2 , denoted by $L_1 \cup L_2$ is:

 $L_1 \cup L_2 = \{w | w \text{ is in } L_1 \text{ or } w \text{ is in } L_2\}$

Example 1. $\Sigma = \{0, 1\}$

 $L_1 = \{ w \in \Sigma^* | w \text{ begins with } 0 \}$

 $L_2 = \{ w \in \Sigma^* | w \text{ ends with } 0 \}$

 $L_1 \cup L_2 = \{w \in \Sigma^* | w \text{ begin with } 0 \text{ or end with } 0\}$

3. Intersection of Language:

• Let L_1 and L_2 be languages over an alphabet Σ . Intersection of L_1 and L_2 , denoted by $L_1 \cap L_2$ is:

 $\mathbf{L}_1 \cap \mathbf{L}_2 = \{ w | w \text{ is in } \mathbf{L}_1 \text{ and } w \text{ is in } \mathbf{L}_2 \}$

Example 1. $\Sigma = \{0, 1\}$

 $L_1 = \{ w \in \Sigma^* | w \text{ begin with } 0 \}$

 $L_2 = \{ w \in \Sigma^* | w \text{ ends with } 0 \}$

 $L_1 \cap L_2 = \{ w \in \Sigma^* | w \text{ begins with } 0 \text{ and ends with } 0 \}$

4. Concatenation of Language:

• Let L_1 and L_2 be languages over an alphabet Σ . The concatenation of L_1 and L_2 , denoted by $L_1 \cdot L_2$ is $\{w_1 \cdot w_2 \mid w_1 \text{ is in } L_1 \text{ and } w_2 \text{ is in } L_2\}$

Example 1.	$\mathbf{L}_{1} = \{a, b, ab, ba\}$	$L_2 = \{\lambda\}$			
	$\mathbf{L}_1 \cdot \mathbf{L}_2 = \{a, b, ab, ba\}$				
Example 2.	$\mathbf{L}_1 = \{a, b, ab\}$	$L_2 = \{b\}$			
	$\mathbf{L}_1 \cdot \mathbf{L}_2 = \{ab, bb, abb\}$				
Example 3.	$\mathbf{L}_1 = \{a, b, ab\}$	$L_2 = \{\}$			
	$L_1 . L_2 = \{\}$				
Note: $ L_1, L_2 \le L_1 \times L_2 $					
Example 4.	$\mathbf{L}_1 = \{a, ab\}$	$\mathbf{L}_2 = \{b, bb\}$			
	$L_1 \cdot L_2 = \{ab, abb, abbb\}$				
Example 5. $\Sigma = \{0, 1\}$					
$L_1: \{ w \in \Sigma^* w \text{ begins with } 0 \}$					
	$L_2: \{ w \in \Sigma^* w \text{ ends with } 0 \}$				
$L_1 . L_2 : \{ w \in \Sigma^* w \text{ begins with } 0 \text{ and ends with } 0 \text{ and } w \ge 2 \}$					
	D .				

5. Reversal of Language (L^{R}) :

• Let L be a language over an alphabet Σ . Reversal of language L, denoted by L^{R} is,

Example 1.	$L = \{0, 1, 1, 0\}$
	$L^{R} = \{0, 1, 0 1\}$
Example 2.	$L = \{010, 11011\}$
	$L^{R} = \{010, 11011\}$

- $L = L^{R}$, if L contains strings which are Palindromes.
- $|L| = |L^{R}|$

Example 3. $\Sigma = \{0, 1\}$

 $L = \{ w \in \Sigma^* | w \text{ starts with } 0 \}$ $L^{R} = \{ w \in \Sigma^* | w \text{ ends with } 0 \}$

L⁺ contains λ only if L includes λ

THEORY OF COMPUTATION

CS & IT

Example 1.

 $L = \{ab, aa, baa\}$

Which of the following strings are in L*?

(a) ab aab aaa baa

 $(b)\ b\ aaa\ aa\ b\ aaaa\ b$

Solution:

 \Rightarrow A string is in L* if it is present either in L⁰ or L¹ or L² or L³.....

 \Rightarrow Divide the given string into sub strings and every sub string must belongs to L.

 $\underline{ab} \ \underline{aa} \ \underline{baa} \ \underline{ab} \ \underline{aa}$

The string must be present in L^* , still string must be part of L^s .

 $\Rightarrow \qquad \underline{baa} \ \underline{aa} \ \underline{ab} \ \underline{aa} \ \underline{aa} \mathbf{b}$

Still last $\mathbf{b} \notin \mathbf{L}$ thus given string is not present in \mathbf{L}^* .

7. Power of Language:

• If L is a language over on alphabet Σ , then

 $L^0 = \{\lambda\}$ $L^1 = L$ $L^2 = L.L$ $L^3 = L.L.L$: : Example 1. $\Sigma = \{a, b\}$ $L = \{a, ab, abb\}$ Check whether the given string is present in L^4 or not? Solution: $w = a \ ab \ abb \ a$ Divide the string into 4 substrings, and every substring belongs to language L. w = a ab abb aString must be present in L^4 Example 2. $\Sigma = \{a, b\}$ $L = \{\lambda, a, b, ab\}$ w = a b a bCheck whether the given string is present in L^5 or not? Solution: $w = a b a b \equiv a b a b \lambda$ still string can be divided into 5 substrings and every substring belong to L, \therefore String w is present in L^5 How many substrings (of all lengths inclusive) can be formed from a character string of Example 3. length n? Assume all characters to be distinct? GATE No. of substrings (of all lenths inclusive) that can be formed from a character strings of Solution: $n(n \pm 1)$

length n is
$$\frac{n(n+1)}{2} + 1$$

Published Books

Office: 58B, Kalu Sarai Near Hauz Khas Metro Station New Delhi-16

Helpline: 9990657855 , 9990357855

www.engineersinstitute.com